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Abstract— This paper describes a variety of side-channel 

attacks on mobile and wearable computing systems, exposing 

vulnerabilities in their system and software architectures. 

Specifically addressed are malware approaches that passively 

leverage sensors on-board the systems to monitor user 

information for sensitive information retrieval. Some potential 

countermeasures at the system and user interface level are 

provided. 
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I. INTRODUCTION 

With the proliferation of mobile devices, including smart 
phones, in the marketplace, the opportunities and the 
benefits of software attacks targeting these devices is 
growing. Wearable devices, with examples including smart 
watches, Fitbits, and Google Glass, form the most recent 
wave in the mobile explosion and open a new set of security 
vulnerabilities. 

Information on mobile devices, specifically smart 
phones, makes them uniquely attractive targets. Mobile 
devices commonly have access to personal information 
(including saved passwords, login information, and email 
access), location information (including GPS data, daily 
schedules), and now with wearable computers physiological 
information (such as heart rate, ECG). 

Mobile devices are equipped with a large number of 
high-end sensors. The fusion and processing of data from 
these sensors has been demonstrated to allow a great deal of 
user information to be inferred, both purposefully and 
maliciously. Moreover, many of these sensors, notably the 
motion sensors, lack any explicit access control mechanism, 
with requirements for apps to have permissions to access 
their data. 

With broadband internet access, transferring data to a 
malicious agent in the cloud is feasible. The data capture 
and transfer is not likely to have a demonstrated drain on 
system resources such as memory and power, making it less 
likely for a user to notice the intrusion. As computation can 
be easily passed on to a remote server, device processing 
power or memory limitations due not deter or prevent the 
attack. 

Post manufacturer software downloads from software 
marketplaces, such as iTunes, Google Play, and 3rd party 
marketplaces provide opportunities for malware to gain 
access to the devices. These apps, typically impersonating 
legitimate apps, can gain access to device sensors. 
Determining the app is using the data for malicious purposes 
is not readily possible, as the data can be captured for 
legitimate reasons and then used also for attacks. For 
example, motion data can be captured, relayed, and used for 
a fitness app, but then the same data can also be used for 
password inference. These third party apps, even if 
reviewed by the app marketplaces, do not provide 
information about how the captured data can be further 
leveraged for security breaches. 

This paper examines side-channel attacks on mobile and 
wearable systems, which leverage data captured passively 
and non-intrusively from sensors on-board the mobile 
devices.  

Unlike the well-known smudge attack [2] which requires 
possession of the smart phone to maneuver under the 
appropriate lighting conditions, all of the approaches 
considered here assume the smart device is not removed 
from the user’s possession. 

 

(a) 

 

(b) 

Fig. 1. Attack overview (a) in smart phones (b) in smart watches (or 

other paired wearable devices. Malware installed on the smart device 

accesses the on-board sensors and transmits the data to a malicious agent 
in the cloud which determines the user information. 
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The attacks considered leverage physical phenomena 
associated with private data entry (such as smart device 
movement) to determine what data is entered or produced 
by the user. The attacks considered included capturing data 
from the attacked device directly or using it to capture 
information from an adjacent computer, a paired smart 
phone, or the user. 

Once side-channel data is retrieved from the sensors, it 
is transmitted to a malicious agent in the cloud via the 
internet connection of the device itself or a paired device (as 
is common with wearable devices such as smart watches). 
The computation is carried out in the cloud to uncover the 
private user information and complete the attack. Figure 1 
provides an overview of the attack components, for both 
smart phone and wearable systems. 

II. ATTACK MODEL 

Side channel attacks on mobile and wearable systems 
involve malware accessing sensor data, such as the 
gyroscope and accelerometer, potentially filtering the data, 
then transmitting it to a remote server. Computation on the 
remote server learns features of the data with the goal of 
determining private information about the device’s users. 
For example, by using the accelerometer and gyroscope 
data, keystrokes can be inferred, enabling the recovery of 
password information. 

To apply many established learning algorithms to the 
data, training data is required. This training data can be 
obtained for a general user audience, and applied to 
individual user being attacked. However, more potently, the 
user can be tricked into installing malware on the device, 
which collects personalized training data. This malware can 
impersonate a game, as with TapLogger [7], where the user 
types or swipes, with the location of the types or swipes 
being recorded for the purposes of labelling the motion data. 

A. Data Extracted 

The side-channel attacks aim to capture private sensitive 
information, such as passwords, via surreptitious access to 
device sensors. The attacker’s wish list includes: 

 Personal Identification Numbers (PINs); 

 Passwords; 

 Patterns for unlocking smart phones; 

 Entered text;  

 Surrounding private information, such as 
conversations or neighboring computing 
activity. 

Attackers are eager to capture password or numeric 
passwords (known as PINs). For unlocking phones, 
capturing the pattern that a user enters in the locked 
screen is valuable. Additionally, information entered, 
such as Google search terms, is desirable. Note that text, 
including words and sentences, is easier to infer, as the 
inherent redundancies of language and its constructs 

help to deal with the errors in measurement or 
classification. 

In addition to capturing information entered onto a smart 
phone, information such as neighboring computing 
activity or conversations near a smart device have been 
demonstrated.  

B. Leveraged Sensors 

Smart devices are equipped with a plethora of sensors. 
Examples include: 

 Location sensors, such as GPS, proximity; 

 Motion sensors, such as accelerometers, 
gyroscopes, magnetometers; 

 Environmental sensors, for such information as 
ambient light, temperature, barometer; 

 Biometric sensors for wearable systems, 
providing heart rate, ECG; 

 Audio and video sensors, namely cameras and 
microphones. 

Attacks leveraging mobile device cameras or 
microphones has been demonstrated. However, these 
sensors are protected with permissions that users are 
informed of and are required to enable for an app to gain 
access. The motion and environmental sensors, however, do 
not have an access control mechanism [1], making them 
more likely targets. 

C. Attach Components 

Most of the machine learning approaches taken for 
keystroke classification have been supervised. As a result, 
these approaches require the collection of labelled training 
data. To collect the labelled training data for the supervised 
learning approaches, the attacks rely on the user 
downloading a malicious app that captures screen tap 
locations in conjunction with paired motion data. Thus 
providing labels to the captured motion data. 

These apps, possibly impersonating as a game, require 
the user to tap at all points of the screen that match up to 
keyboard character or PIN pad digit locations. Then with 
both the actual keystroke locations captured directly from 
the game and the motion data captured surreptitiously by the 
malware, the paired data can be used to train the classifier 
used by the malicious agent. This is summarized in Figure 
2. 

This approach is a one-to-one classification. A one-to-
many classification, although by its nature less accurate, 
does not require the training data to come from the user. 
Instead non-user data is used to train the classifier. In this 
case, the malware only need to passively observe the sensor 
data and transmit it to the cloud. The app can be 
impersonating as a fitness app, accessing the motion data 
and transmitting it onwards. 
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Fig. 2. Using a decoy app, the attacker can capture individual labelled 

data to train the classifier for each user. 

D. Event versus Keystrock Classification 

When an attack is classifying keystrokes on a smart 
phone, there are two classification challenges. The first 
challenge is to classify the keystrokes. In the case of PIN 
inference, differentiating a ‘1’ keystroke from a ‘2’ 
keystroke for example. However, there is also a second 
challenge, differentiating a non-tap event and a tap event to 
determine when a tap event is taking place. A considered 
approach groups non-tap events and taps events together 
and then carries the classification as the same time. 

III. MOBILE DEVICE SIDE-CHANNEL ATTACKS 

In this section, we consider an array of passive side-
channel attacks that leverage smart phone sensors. Previous 
work has examined the leakage of sensitive data via access 
to the device camera looking at the movements of the phone 
during taps [3], via access to location information [4], and 
via access to the microphone, camera, and GPS [5]. 

The movement of the smart phone as the user taps the 
smart phone screen has become an especially rich area of 
attack. TouchLogger used motion and orientation of the 
gyroscope to infer PINs [6]. TapLogger leveraged 
accelerometer and gyroscope data for PIN inference [7]. Cai 
et al examined how these results translate to a variety of 
devices, with different dimensions [8]. TapPrints, using the 
accelerometer and the gyroscope, was able to determine 
letters typed on the smart phone QWETRY keyboard [9]. 
Using only the accelerometer, ACCessory demonstrated that 
six-character passwords entered on the phone could be 
inferred [10].  Aviv et al examine PIN and pattern entry for 
unlocking using smart phone accelerometers [11]. 

IV. MOBILE DEVICES COMPRIMISED TO EAVESDROP 

In addition to capturing sensitive information entered 
onto a smart phone, attacks using smart phones sensors to 
eavesdrop on users have been considered.  

Smart phones are pervasive in user lives, and so even 
when using a computer, a user is likely to place the smart 
phone next to the computer they are using, potentially 
compromising the data entered onto the computer. 

Researchers have examined the success of recovering 
adjacent keyboard activity using the smart phone’s 
microphone [12] and accelerometer [13].  

 

 

Fig. 3. Smart phone used as an eavsedropping device for nearby 

computing activity. 

Figure 3 provide an overview of this attack set-up. The 
user is typing at a computer keyboard, and has placed 
his/her smart phone on the table next to the keyboard. With 
vibrations of the smart phone caused by the typing 
movements, search keywords could be extracted. Similarly, 
the sounds of the typing was used to infer the text being 
typed. 

Stanford researchers have demonstrated that 
conversations carried out near smart phones can be captured 
and identified using only the smart phones gyroscope [14]. 

These attacks capture motion sensor data, use well-
known classifiers, and benefit from language constructs 
whose inherent redundancy allows erroneous classifications 
to be identified and disregarded.  

V. SIDE-CHANNEL ATTACKS ON SMART WATCHES 

The majority of wearable devices sales are in wrist-worn 
technology, including fitness monitors and smart watches, 
with smart watches becoming a common utility for users. 

Using custom hardware, the data from wrist-worn 
sensors has been shown to successfully classify smoking 
gestures [15] and eating gestures [16]. Motion sensor data 
from smart phones held in hand has been shown to provide 
enough information to impersonate a stylus [17] and a 
mouse [18]. Using smart watches, gesture classification 
using accelerometer and gyroscope data has also been 
examined [19]. 

Very recent research has demonstrated that malware 
accessing smart watches motion sensors can be used to 
capture sensitive information, such as PINs entered on smart 
phones [20][21]. Additionally, text entered on a computer 
keyboard can be inferred using the smart watch motion 
sensors [22]. 

Smart watches are especially susceptible to side-channel 
attacks, as they house powerful sensors and they are worn 
continuously. The only consolation is that only the non-
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dominant hand information can be directly captured. 
However, as is the case with [21] and [22], dominant hand 
information can be extrapolated. 

VI. COUNTERMEARSURES 

To combat the array of side channel attacks presented in 
this paper, the following countermeasures can be 
considered. 

At the operating system level, the flow of sensitive data 
can be tracked with approaches such as TaintDroid [4]. A 
complementary approach would involve limiting access to 
sensors. Just as access control mechanisms are in place for 
the cameras and the microphone, they can be added for the 
motion sensors. Limiting access to the sensors during 
private data entry is another related approach. Relaying data 
access events with an LED is yet another approach to alert 
the user. 

At the user interface level, modifying the keyboard or 
the number pad during private data entry (such as 
passwords) can counteract most of the presented attacks. 
The user is burdened with a lengthier password entry 
process, as they have to search for the characters to enter. 
However, in this way nearly all the side-channel attacks 
presented in this paper are thwarted.  

Finally, passwords can be securely saved in memory and 
relayed only after some alternative form of authentication is 
completed. Smart phone sensor data has also been used for 
authentication via differences in tap timing [23] and 
bioimpedence [24].  Examples of mobile biometric 
authentication include the use of gait [25] [26], walking 
patterns [27], and gaze [28].  

VII. CONCLUSION 

With the ubiquity of mobile and now wearable devices; 
and the increased value of the data entered on these devices, 
the potential for attack is apparent. This paper presented an 
array of side-channel attacks that leverage mobile devices 
sensor data to determine private user information. 
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